大模型基础 – 开源大语言模型技术前沿书籍

大模型基础 – 开源大语言模型技术前沿书籍

《大模型基础》系统解析大语言模型核心技术,涵盖传统语言模型、Transformer架构演化、Prompt工程、参数高效微调等六大前沿领域,每月持续更新追踪技术动态。全书以动物案例增强可读性,配套章节论文清单及完整PDF资源下载,深度剖析模型编辑、检索增强生成等实战技术,提供大语言模型评测方法及推理加速预研方向。教材整合统计方法、RNN架构、Decoder-only模型等核心知识点,附加低秩适配、T-Patcher等实操方案,助力开发者构建智能体应用体系。开放社区互动优化机制,持续补充大模型智能体等新内容,打造专业级人工智能技术学习生态。

本书目录

章节 所含内容
第 1 章:语言模型基础 1.1 基于统计方法的语言模型 1.2 基于 RNN 的语言模型 1.3 基于 Transformer 的语言模型
1.4 语言模型的采样方法 1.5 语言模型的评测
第 2 章:大语言模型 2.1 大数据 + 大模型 → 新智能 2.2 大语言模型架构概览 2.3 基于 Encoder-only 架构的大语言模型
2.4 基于 Encoder-Decoder 架构的大语言模型 2.5 基于 Decoder-only 架构的大语言模型 2.6 非 Transformer 架构
第 3 章:Prompt 工程 3.1 Prompt 工程简介 3.2 上下文学习 3.3 思维链
3.4 Prompt 技巧 3.5 相关应用
第 4 章:参数高效微调 4.1 参数高效微调简介 4.2 参数附加方法 4.3 参数选择方法
4.4 低秩适配方法 4.5 实践与应用
第 5 章:模型编辑 5.1 模型编辑简介 5.2 模型编辑经典方法 5.3 附加参数法:T-Patcher
5.4 定位编辑法:ROME 5.5 模型编辑应用
第 6 章:检索增强生成 6.1 检索增强生成简介 6.2 检索增强生成架构 6.3 知识检索
6.4 生成增强 6.5 实践与应用

GitHub:https://github.com/ZJU-LLMs/Foundations-of-LLMs


  1. 转载请保留原文链接谢谢!
  2. 本站所有资源文章出自互联网收集整理,本站不参与制作,如果侵犯了您的合法权益,请联系本站我们会及时删除。
  3. 本站发布资源来源于互联网,可能存在水印或者引流等信息,请用户擦亮眼睛自行鉴别,做一个有主见和判断力的用户。
  4. 本站资源仅供研究、学习交流之用,若使用商业用途,请购买正版授权,否则产生的一切后果将由下载用户自行承担。
  5. 联系方式(#替换成@):wayneluck#gmail.com

© 版权声明
THE END
喜欢就支持一下吧
点赞15 分享
评论 抢沙发
头像
欢迎您留下宝贵的见解!
提交
头像

昵称

取消
昵称表情代码图片

    暂无评论内容